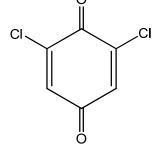
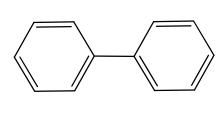

LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034


M.Sc. DEGREE EXAMINATION - CHEMISTRY FIRST SEMESTER - APRIL 2024


PCH1MC03 - QUANTUM CHEMISTRY AND GROUP THEORY

	Date: 12-04-2024 Dept. No. Max. : 100 Mark							
	Time. 09.00 AW - 12.00 NOON							
	SECTION A – K1 (CO1)							
	Answer ALL the questions $(5 \times 1 = 5)$							
1	Answer the following							
a)	Define an orthonormal set.							
b)	Represent graphically, the wave function, ψ for the state $n = 3$ for a particle in one dimensional box.							
c)	Write Kohn - Sham equation.							
d)	Mention any two point groups that are related to optical activity.							
e)	Whether the vibrations of 'g' modes are Raman active?							
	SECTION A – K2 (CO1)							
	Answer ALL the questions $(5 \times 1 = 5)$							
2	Fill in the blanks							
a)	Euler's formula is							
b)	The expression for finding the ground state energy of a particle in a 2D square box is							
c)	The Hamiltonian operator for a perturbed system in terms of an unperturbed system is							
d)	The symbol for a one dimensional representation that is symmetric with respect to σ_v is							
e)	The overlap integral is defined as							
	SECTION B – K3 (CO2)							
	Answer any THREE of the following $(3 \times 10 = 30)$							
3	(a) Write the postulates of quantum mechanics.							
	(b) Show that Balmer series occurs between 3646 Å and 6563 Å. (6+4)							
4	(a) Illustrate the quantum mechanical tunneling with examples.							
	(b) A particle of mass 2×10^{-26} g is confined in a one dimensional box of length 4.00 nm. Find							
5	wavelength of the photon emitted when the particle goes from $n = 3$ to $n = 2$ level. (5+5)							
5	Write the Schrodinger equation to be solved for hydrogen atom and solve it for its energy using a simple solution, which assumes the wave function to depend only on the distance r and not on the							
	angles θ and φ .							

Predict the point group of the following molecules and determine their order and class.

Which of the above molecules possess dipole moment?

- 7 (a) Normalize the following molecular orbital: $\psi_1 = C(1s_a + 1s_b)$.
 - (b) Obtain the possible hybridization scheme of BF_3 molecule using group theory. The D_{3h} character table is provided. (4+6)

D_{3h}	Е	$2C_3$	3C' ₂	$\sigma_{\rm h}$	$2S_3$	$3\sigma_{\rm v}$		
A' ₁	+1	+1	+1	+1	+1	+1	-	x^2+y^2, z^2
A'2	+1	+1	-1	+1	+1	-1	R_z	-
E'	+2	-1	0	+2	-1	0	(x, y)	(x^2-y^2, xy)
A" ₁	+1	+1	+1	-1	-1	-1	-	-
A"2	+1	+1	-1	-1	-1	+1	Z	-
Е"	+2	-1	0	-2	+1	0	(R_x, R_y)	(xz, yz)

SECTION C - K4 (CO3)

Answer any TWO of the following

 $(2 \times 12.5 = 25)$

- 8 (a) Derive time-dependent Schrodinger wave equation.
 - (b) The temperature of a fire ball in a thermonuclear explosion can reach a temperature of about 10^7
 - K. What value of λ_{max} does this correspond to? (8.5+4)
- Use the method of separation of variables to break up Schrodinger equation for a rigid rotor into ordinary equations and write the solutions for each.
- (a) Show that the wave functions describing 1s orbital is normalized.

Given:
$$\Psi_{1s} = \frac{1}{\sqrt{\pi}} (\frac{Z}{a_0})^{\frac{3}{2}} e^{-\frac{Zr}{a_0}}$$

- (b) C_{3v} and C_{3h} point groups have the same order, yet classes are different. Prove. (6.5+6)
- (a) Highlight the importance of variation method in the determination of energy of MO for Hydrogen molecular ion.
 - (b) Write down the secular determinant for ethylene and allyl cation using Hückel's method. (6.5+6)

SECTION D - K5 (CO4)

Answer any ONE of the following

 $(1 \times 15 = 15)$

- 12 (a) How distant is the point, (5, 20°, 150°) away from the origin?
 - (b) Derive the wave function and energy for a particle in a rectangular three dimensional box. (5+10)
- (a) Explain the following: (i) Hartree-Fock Self consistent Field (ii) Pauli principle of anti-symmetric wave function.
 - (b) Construct the character table for C_{3v} point group.
 - (c) Deduce the IR and Raman active modes of vibrations of CH_4 molecule. The T_d character table is given below: (5+5+5)

Character table for T_d point group

_	41 8 1								
	E	8C ₃	3C ₂	6S ₄	6σ _d	linear, rotations	quadratic		
$\mathbf{A_{l}}$	1	1	1	1	1		$x^2+y^2+z^2$		
A ₂	1	1	1	-1	-1				
E	2	-1	2	0	0		$(2z^2-x^2-y^2, x^2-y^2)$		
T_1	3	0	-1	1	-1	(R_x, R_y, R_z)			
T ₂	3	0	-1	-1	1	(x, y, z)	(xy, xz, yz)		

SECTION E – K6 (CO5)

Answer any ONE of the following

 $(1 \times 20 = 20)$

- (a) Evaluate the commutator for the angular momentum operators, L_x and L_y .
 - (b) The force constant for H⁷⁹Br is 392 Nm⁻¹. Calculate the fundamental vibrational frequency and zero point energy of H⁷⁹Br.
 - (c) Sketch the radial plot for 2p orbital and also find the angular and radial nodes for 2p orbital.

(10+6+4)

- (a) Apply variation theorem to predict the ground state energy of hydrogen atom using the trial wave function, $\psi = e^{-\alpha r}$.
 - (b) Determine the symmetry operations and their classes of PCl₅ molecule.
 - (c) Find the Huckel molecular orbitals and energies for cyclobutadiene.

(7+5+8)
